

University of Basrah

Electrical Department

First Class

Visual Basic 6.0

 Electrical Engineering Dept. Visual Basic

2

1-Introduction

Hundreds of high-level languages have been developed, but only a few have achieved broad

acceptance, for example (QBASIC, FORTAN and Pascal). Visual Basic is an example of a graphical-

based language. A graphical-based language allows the user to work directly with graphics.

Visual Basic is derived from the “visual” term refers to the method used to create the graphical user

interface (GUI), Simply drag and drop prebuilt objects into place on screen without having to learn an

additional software package. The “Basic” term refers to the BASIC (Beginners All-Purpose Symbolic

Instruction Code) language, a language used by more programmers. Visual Basic has evolved from the

original BASIC language and now contains several hundred statements, functions, and keywords, many

of which relate directly to the windows GUI. Beginners can create useful applications by professionals

to accomplish anything that can be accomplished using any other windows programming language.

Visual Basic is a Microsoft Windows Programming language. Visual Basic programs are created

in an Integrated Development Environmental (IDE). The IDE allows the programmer to create, run and

debug Visual Basic programs conveniently. IDEs allows a programmer to create working programs in

a fraction of the time that it would normally take to code programs without using IDEs.

2-Structure of a Visual Basic Application
To run Visual Basic program select, Start> Programs > Microsoft Visual Studio 6.0> Microsoft

Visual Basic 6.0 as shown in Fig.(2-1). When Visual Basic is loaded, the New Project dialog shown

in Fig.(2-2) is displayed.

 Fig.(2-1) Computer screen Fig.(2-2) New Project dialog.

The New Project dialog allows the programmer to choose what type of Visual Basic program to

create. Standard EXE, which is highlighted by default, allows the programmer to create a standard

executable. Each type listed in Fig.(2-2) describes a group of related files called a Project.

 Electrical Engineering Dept. Visual Basic

3

2-1 Project (VBP)

Project is a program designed to user application that may be simple (like calculator program)

or complex (like word program). The project types listed in Fig.(2-3) are the “Visual” in Visual Basic,

because they contain predefined features for designing Windows programs. The project is a collection

of files that makes the user program. They may consist of form, modules, active x controls. The new

project dialog contains three tabs

• New: creating new project.

• Existing: opening an existing project.

• Recent: opening a project that has been previously loaded into the IDE.

2-2 Elements of Integrated Development Environmental (IDE).

Figure (2-3) shows The IDE after Standard EXE is selected. The top of the IDE window (the

title bar) displays “Project1-Microsoft Visual Basic [design]”. The environment consists of various

windows when Visual Basic is started (by default):

2-2-1 Project1-Form1 (Form): window contains a form named Form1, which is where the program’s

Graphical User Interface (GUI) will be displayed. A GUI is the visual portion of the program, this

is where the user enters data (called inputs) to the program and where the program displays its

results (called outputs). We refer to the Form1 window simply as “the form”. Forms are the

foundation for creating the interface of an application. You can use the forms to add windows and

dialog boxes to your application. You can also use them as container for items that are not a

visible part of the application’s interface. For example, you might have a form in your application

that serves as a container for graphics that you plan to display in other forms.

2-2-2 Toolbox Controls: Contains a collection of tools that are needed for project design as shown in

Fig. (2-4). To show the toolbox press View> toolbox icon. The user can place the tool on form,

and then work with the tool. To place the tool on form: click on tool>draw tool to form > the tool

Fig. (2-3)

Menu Bar

Tool Bar

Form

 Toolbox Controls

 Project Explorer

 Properties

Window

Form Layout Window.

 Electrical Engineering Dept. Visual Basic

4

appears on form or double click on tool then the tool appears on form. Table (1) summarizes the

toolbox

 Fig.(2-4) Toolbox Window.

Table (1): Toolbox controls summary.

Control Description

Pointer Used to interact with controls on the form(resize them, move them, etc.). The pointer is not a control

PictureBox A control that display images or print the result.

Label A control that displays uneditable text to the user.

TextBox A control for accepting user input. Textbox can also display text.

Frame A control for grouping other controls.

CommandButton A control that represents a button. The user presses or clicks to initiate an action.

CheckBox A control that provides the user with a toggle choice (checked or unchecked)

OptionButton Option buttons are used in groups where only one at a time can be true.

ListBox A control that provides a list of items.

ComboBox A control that provides a short list of items.

HscrollBar A horizontal scrollbar.

VscrollBar A vertical scrollbar.

Shape A control for drawing circles, rectangles, squares or ellipse

Line A control for drawing line.

DrivelistBox A control accessing the system disk drivers.

DirlistBox A control accessing directories on a system

Filelistbox A control accessing file in a directory

Image A control for displaying images. The images control does not provide as many capabilities as a

picturebox.

OLE A control for interacting with other window applications.

Timer A control that performs a task at programmer specified intervals. A timer is not visible to the user.

2-2-3 Properties Window: The properties window displays the properties for a form or control.

Properties are attributes such as size, position, etc. like a form; each control type has its own set

of properties. Some properties, like width and height, such as, are common to both forms and

controls, while other properties are unique to form or control. Controls often differ in the number

controls.

Pointer
Label

Frame

checkbox

Combobo

HScrollB

Timer

DirListBox

Shape

Image

OLE

VScrollB

DriveListB

File

ListBox

Option Button

 Command Button

TextBox

PictureBox

Line

Date

 Electrical Engineering Dept. Visual Basic

5

and type of properties. Properties are listed either alphabetically (by selecting the alphabetic tab)

or categorically (by selecting the categorized tab). The most important properties of the objects

in general are listed in the following table. To show the properties window press View> properties

window icon.

Properties name Objective

Name Used to represent name of object in code.

Caption Name appears on object.

Back color Background color for object.

Fore color Color of text written on object.

Font Font style type and size

Visible The tool is visible or invisible.

Enable The tool enable or disable

Height Length of object

Width Width of object

Top Coordinates of top of object on screen

Left Coordinates of left of object on screen

Text Allows inputting and editing text in object.

2-2-4 Project Explorer Window: The window titled Project-Project1 is called the Project Explorer

and contains the project files. The project explorer window’s tool bar contains three buttons,

namely view code, view object and toggle folders. When pressed, the view code button displays

a window for writing Visual Basic code. View object, when pressed, displays the form. Double-

clicking form1 (form1) also displays the form. The toggle folders button toggles (i.e., alternately

hides or shows) the forms folder. The forms folder contains a listing of all forms in the current

project. To show the Project Explorer window press View> Project Explorer window icon

2-2-5 Form Layout Window: The Form Layout window specifies a form’s position on the screen at

runtime. The Form Layout window consists of an image representing the screen and the form’s

relative position on the screen. With the mouse pointer positioned over the form image, drag the

form to a new location.

2-2-6 Menu Bar: Contains a standard command and specific command like (File, Edit, View, Project,

Format, Debug, Run, etc.)

2-2-7 Tool Bar: Contains several icons that provide quick access to commonly used features

2-3 Code Form: Each standard form has one code form for code. The user can write code in this code

form (as a work sheet) in the design stage. This code will be applied at run time.

The code is written in code form and it will be edited quickly by code editor. The codes are of two

categories:

• Declaration is written before any procedure in the code.

• Statements. The user selects the required event then code statements are written in side these event

procedures.

 Electrical Engineering Dept. Visual Basic

6

2-3-1 Sub Procedures: A Sub Procedure is a block of code that is executed in response to an

event. By breaking the code in a module into Sub procedures, it becomes much easier to find or modify

the code in your application. The syntax for a Sub procedure is:

[Private Sub procedure name (arguments)

Statements

End Sub

2-3-2 Events: Events are like electrical switches. The electrical switches are of many types, so

are the events. The form and controls support events (generation, interaction with mouse and keyboard).

The most important events in Visual Basic are described in the following table.

Event Action taken when It provide the following integers

Click Single click on object.

DbClick Double click on object.

Mouse move Mouse pointer move object. Button ,shift ,X,Y

Key press Pressing a key of the key board. Key Ascii

DragDrop Move object to another place. Source, X, Y

2-4 Steps in Developing Application:

There are three primary steps involved in building a Visual Basic application:

1-Draw the user interface

2- Assign properties to controls

3- Attach code to control

 To see how this is done, use the steps in the following procedures to create a simple application for

the following example

Example 2-1: Design a form with one text box and two Commands button. Write a code so when run

project and click on command1 (O.k.) replace the word (Welcome) in text box, and when click on

Command2 (Close) terminate the program and return back to the form interface.

Solution:

 Electrical Engineering Dept. Visual Basic

7

❖ Creating the Interface.: The first step in building a Visual Basic application is to create the forms

that will be the basis for your application’s interface. Then you draw the objects that make up the

interface on the forms you create.

1. Adding a text box to the form. Double-click the toolbox’s textbox to create a text box with sizing

handles in the center of the form.

2. Adding a Command Button1 to the form. Click on button and draw button1 to form then the

button appears on form.

3. Repeat step 2 to add a Command Button2 to the form.

❖ Setting Properties

The next step is to set properties for the objects. The properties window provides an easy way to set

properties for all objects on a form. For the Example 1, you’ll need to change three property setting.

Use the default setting for all other properties.

Note:

 Electrical Engineering Dept. Visual Basic

8

• The Caption property determines what is displayed in the form’s title bar or what text the

controls displays on a form.

• The TextBox’s Text Property determines what text (if any) the TextBox displays.

• The Name property identifies a form or control. It’s necessary only for writing code.

Object Property Setting

Form1

Name Form1

Caption Example1

Font Bold and size 12

Command Button1

Name Command1

Caption O.k.

Font Bold and size 12

Command Button2

Name Command 2

Caption Close

Font Bold and size 12

TextBox
Name Text1

Text Empty

❖ Writing Code:

The code editor window is where you write Visual Basic code for your application. Code consists of

language statements, constants, and declarations. To open the code window, double-click the form or

control for which you choose to write code, or from the Project Explorer window, select the name of a

form and choose the View code button.

➢ In the Object list box, select the name of an object in the active form. Or double click of an

object.

➢ In the procedure list box, select the name of an event for the selected object. The Click procedure

is the default procedure for a command button and the Load is default procedure for a form.

➢ An event procedure for a control combines the control’s actual name (specified in the name

property), an underscore (_), and the event name. For example (Command1_click).

➢ Type the code between the Sub and the End Sub statements.

Choose the command1 and type the following code:

Private Sub Command1_click ()

Text1.text=”Welcome”

End Sub

Choose the command2 and type the following code:

Private Sub Command2_click ()

 Electrical Engineering Dept. Visual Basic

9

End

End Sub

Note: The statement END used to close the program runtime.

❖ Running the Application

To run the application, choose start from the run menu, or click the start button on the toolbar ,

or F5 Click the command button (O.k.) and see the “Welcome” displayed in the text box. Click the

command button (close) the end the program and return to the form window.

❖ Saving a Project

Choosing save project from the file menu. Visual Basic will prompt you separately to save the form and

then the project.

Example 2-2: Design a form shown in figure below, with three text boxes and one Command Button.

Write code in the Command1 (Execute). So when run project enter the Student Name in TextBox (Txt1)

and the Father Name in TextBox (Txt2). When click on Command1 (Execute) replace the Full Name

in the TextBox(Txt3).

Solution:

❖ Creating the Interface.:

1. Adding a Label to the form1. Double-click the Label’s Label to create a Label with sizing

handles in the center of the form1.

2. Repeat step 1 to add Label2 and Label3.

 Electrical Engineering Dept. Visual Basic

10

3. Adding a TextBox to the form1. Double-click the toolbox’s textbox to create a text box with

sizing handles in the center of the form1.

4. Repeat step 3 to add Text2 and Text3.

5. Adding a Command Button1 to the form. Click on button and draw Button to form then the

Button1 appears on form1.

❖ Setting Properties

Object Property Setting

Form1

Name Form1

Caption Example1

Font Bold and size 12

Command Button1

Name Command1

Caption Execute

Font Bold and size 12

TextBox1
Name Txt1

Text Empty

TextBox2
Name Txt2

Text Empty

TextBox3
Name Txt3

Text Empty

Labe11

Name Label1

Caption Student Name

Font Bold and size 12

Labe12

Name Label2

Caption Student Name

Font Bold and size 12

 Electrical Engineering Dept. Visual Basic

11

Labe13

Name Label3

Caption Full Name

Font Bold and size 12

❖ Writing Code:

Choose the command1 and type the following code:

Private Sub Command1_click ()

txt3.text=txt1.text+ “ “+txt2.text

End Sub

❖ Running the Application

To run the application, choose start from the run menu, or click the start button on the toolbar ,

or F5 Click the command button1 (Execute) and see the Full Name displayed in the TextBox3. ❖

Saving a Project

Choosing save project from the file menu. Visual Basic will prompt you separately to save the form and

then the project.

3. Fundamentals of programming in Visual Basic

3.1 Data Types (Constant and Variable):

Data types control of internal storage of data in Visual Basic. There are a number of variable data types

that allow you to optimize your code for speed and size.

1- Boolean: A variable of type Boolean requires 2 bytes of memory and holds either the value True

or False. If boolVar is a Boolean variable, then the statement Print boolVar displays(1) when the value

is True and displays (0) when the value is False.

2- Currency: The currency data type is extremely useful for calculations involving money. A variable

of type Currency requires 8 bytes of memory and can hold any number from -9x1014 to 9x1014.

3- Date: A variable of type Date requires 8 bytes of memory and holds numbers representing dates

from January 1St 100 To December 31St 9999. Values of dateVar are displayed in the form

month/day/year (for example, 5/12/1996).

4-Single: A variable of type Single requires 4 bytes of memory and can hold 0, the numbers from

1.40129x10-45 to 3.40283x1038 with the most seven significant digits, and the negatives of these

numbers.

5-Double: A variable of type Double requires 8 bytes of memory and can hold 0, the numbers from

4.94065x10-324 to 1.7976x10308 with at most 14 significant digits and the negatives of these numbers.

 Electrical Engineering Dept. Visual Basic

12

6-Integer: A variable of type integer requires 2 bytes of memory and can hold the whole numbers from

-32,768 to 32,767.

7-Long: A variable of type Long requires 4 bytes of memory and can hold the whole numbers from

2x109 to 2x109.

8-String: A variable of type string requires 1 byte of memory per character and can hold a string of up

to 32,767 characters, string values are enclosed in quotes. A variable of type String*n holds a string of

n characters, where n is a whole number from 1 to 32,767.

9-Variant: A variable of type variant can be assigned numbers, Strings and several other types of data.

A variable of type variant requires 16 bytes of memory and can hold any type of data. When values are

assigned to a variant variable, Visual Basic keeps track of the “type “of data that has been sorted 9for

example, type 2 for integer). By default, Visual Basic uses the variant data type.

3.2 Variables:

In Visual Basic, uses variable for storage values. must start with character and maximum length

255 character and not contain any point.

3.3 Declaration of a variable

The declaration means defining the variable type. The variable has to be declared with the Dim

Statement, supplying a name for the variable:

Dim variable name [As type]

Variables declared with the Dim statement within a procedure exist only as long as the procedure is

executing. When the procedure finishes the value of the variable disappears. In addition, the value of a

variable in a procedure is local to that procedure can’t access a variable in one procedure from another

procedure.

A variables name:

➢ Must begin with letter.

➢ Can’t contain an embedded period or embedded type-declaration character.

➢ Must not exceed 255 characters. The names of controls, forms, and modules must not exceed

40 characters.

➢ They can’t be the same as restricted keywords (a restricted keyword is a word that Visual Basic

uses as part of its language. This includes predefined statements such as “If and Loop”,

functions such as “Len and Abs”, and operators such as “Or and Mod”).

The optional as type clause in the Dim statement allows you to define the data type or object type

of the variable you are declaring (see sec.3.1).

Examples:

Dim X As Integer

Dim Balance As Currency

Dim Y As Long

 Electrical Engineering Dept. Visual Basic

13

Dim A AS Double, B As Double

Dim Month As Date

Dim Max As Single

Dim Name As String

Dim Z,V,C

Error exampls:

 Dim x As string : Dim A, B, C, X (Repeat the variable name at the same time in two Dim statement)

Dim 1st As date (first character is number)

Dim (Ad#1) As string (symbol)

Dim MyName.is As string (point)

Dim Num one As long (space)

Note: The types of variables are used the corresponding suffix shown below in the data type table.

Variable Type Suffix Example

Boolean, Variant, and

Date

None ---

Integer % Dim A %

Long(Integer) & Dim Ab&

Single ! Dim AC!

Double # Dim ACC#

Currency @ Dim AB1 @

String $ Dim AA$

3.4 Scoping Variables:

The Scope of variable defines within parts of program code are aware of its existence. Depending on

how it is declared, a variable is scoped as either a procedure-level (local) or module-level variable.

• Variables used within a procedure: Procedure-level variables are recognized only in the procedure

in which they’re declared. These are also known as local variables. You declare them with the Dim or

Static keywords. For example:

Dim S as integer Or Static SR as integer

Values in local variables declared with static exist the entire time your application is running while

variables declared with Dim exist only as long as the procedure is executing.

Local variables are a good choice for any kind of temporary calculation. For example, you can create

numbers of different procedures containing a variable called (valu1). As long as each valu1 is declared

as a local variable, each procedure recognizes only its own version of valu1. Any one procedure can

alter the value in its local valu1 without affecting valu1 variables in other procedures.

 Electrical Engineering Dept. Visual Basic

14

• Variables Used within a Module: By default, a module-level is variable to all the procedures in that

module, but not to code in other modules. You create module-level variables by declaring them with

the private keyword in the declaration section at the top of the module. For example:

Private valu1 as integer

At the module level, there is no difference between private and Dim, but private is preferred because it

readily contrasts with public and makes your code easier to understand.

• Variables used by all modules: To make a module-level variable available to other modules, use the

public keyword to declare the variable. The values in public variables are available to all procedures

in your application. Like all module-level variables, public variables are declared in the declarations

section at the top module. For example: Public valu1 as integer

Note: You can’t declare public variables within a procedure, only within the declarations section

of a module.

• Declaring All Local Variables as static: To make all local variables in a procedures static, place the

Static keyword at the beginning of a procedure heading For Example: Static Function total (num)

This makes all the variables in the procedure static regardless of whether they are declared with Static,

Dim, and Private. You can place Static in front of any Sub or Function Procedure heading, including

event procedures and those declared as Private.

3.5 Constants: Constant also store values, but as the name implies, those values remains constant

throughout the execution of an application. Using constants can make your code more readable by

providing meaningful names instead of numbers. There are a number of built –in constants in Visual

Basic. There are two sources for constants:

▪ System-defined constants are provided by applications and controls. Visual Basic constants are listed

in the Visual Basic (VB).

▪ User-defined constants are declared using the Const statement. It is a space in memory filled with

fixed value that will not be changed. For example:

Const X=3.14156 Constant for procedure

Private Const X=3.14156 Constant for form and all procedure

Public Const X=3.14156 Constant for all forms

3.6 Comment Statement (Rem any information or ‘ any information) : Only to explain the

code, while be changed to green color.

3.7 Assignment Statement: (Variable-Name=Expression): Expression may include constant,

character, variable (or variables), operators and functions. For example

City=”Baghdad”

Age=29

 Electrical Engineering Dept. Visual Basic

15

 X=2*X

 Z= A+B

 m= Sin (d)

3.8 Outputting Variable: The Print method is used to display data on the screen. The statement

Print expression (example: Print X) displays the value of the expression at the current position

of the cursor in the form Object. The statement Picture.Print expression displays the value of

the expression at the current position of the cursor in the PictureBox object. Several expressions

may be placed in the same Print method if separated by semicolons (to display them adjacent to

one another) or by commas (to display them in successive zones).

Examples :

 Print x , y or Picture1.Print x , y

 Print “ x & y =” ; x ; y or Picture1. Print “ x & y =” ; x ; y

3.9 Visual Basic Operators:

1- The simplest operators carry out arithmetic operations. These operations in their order of precedence

are:

 Operation Code Operation

^ Exponent

*,/ Multiplication and

division

\ Integer division

Mod Modulus – rest of division

-,+ Subtraction and addition

2- To Concatenate two strings, use the & symbol or the + symbol

3- There are six Comparison operators in Visual Basic.

 Operation Code Comparison

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

= Equal to

< > or > < Not equal to

4-There are three logical operators:

 Operation Code Operation

Not Logical not

And Logical and

Or Logical or

 Electrical Engineering Dept. Visual Basic

16

Note: Logical operators follow arithmetic operators in precedence.

Examples:

Private Sub Command1_ click ()

 Picture1.Print 7\3

 Picture1.Print 7 Mod 3

 Picture1.Print "My"&" Name"

Picture1.Print 10/3*15/3*3/2-9/3/2*4*3

 Picture1.Print 4E3-3E2/5/3E1

 Picture1.Print 4E-8/2*5E8/6E16*4E14*3

Picture1.Print 4/3^3/4^2*3^4*2^4

 Picture1.Print 27^1/3-2E2^3*4E-4/4^3

 Picture1.Print (3-3^3)/((3^2+3^3)/3^5)/3^4

Picture1.Print (14+2^5/2^4)^(1/4)+((15-5*4)/(3^2-2^3/2))

 Picture1.Print (((3^(3^3)/3^3)^(1/3)+3^4)^(1/3)* 5^2)^(1/2)

 Exercise (3-1):

 15/3*8/3*9/2-15/3/12*4*3 =

 6E3-3E2/5/3E1 =

 2E-7/2*5E7/6E7*4E7*3 =

 6/3^3/4^2*3^4*2^4 =

 16^1/4+2E2^3*2E-4/4^3 =

 (3+3^3)/((3-3^3)/3^7)/3^5 =

 (23+2^6/2^4)^(1/3)+((10-5*4)/(3^2-2^3/2)) =

 (((3^(3^3)/3^3)^(1/3)-1)^(1/3)* 2^3)^(1/2) =

3.10 Visual Basic Functions: Visual Basic offers a rich assortment of built-in functions. The numeric

and string variables are the most common used variables in programming. Therefore Visual Basic

provides the user with many functions to be used with a variable to perform certain operations or type

conversion. Detailed description of the function in general will be discussed in the following functions

section. The most common functions for (numeric or string) variable X are stated in the following table.

Function Description

 Electrical Engineering Dept. Visual Basic

17

 Numerical Function

X= RND Create random number value between 0 and 1

Y=ABS(X) Absolute of X, |X|

Y=SQR(X) Square root of X ,

Y=SGN(X) -(-1 or 0 or 1) for (X<0 or X=0 or X>0)

Y=EXP(X) 𝒆x

Y=LOG(X) Natural logarithms, ln 𝑋

Y=LOG(X) / LOG(10) log 𝑋

Y=sin (𝑋)

Y=cos (𝑋)

Y=tan (𝑋)

 Trigonometric functions

Y=ATN(X) Is arc= tan−1(𝑋) (Where X angle in radian).

Y=INT(X) Integer of X

Y= FIX(X) Take the integer part

 Function of String Variable

Y=Len(x) Number of characters of Variable

Y=LCase (x) Change to small letters

Y=UCase (x) Change to capital letters

Y=Left (X,L) Take L character from left

Y=Right (X,L) Take L character from right

Y=Mid (X,S,L) Take only characters between S and R

3.11 Converting Data Types: Visual Basic provides several conversion functions can used to convert

values into a specific data type. The following table describes the convert function.

Function Description

CDbl The function CDbl converts, integer, long integer, and single- precision numbers to

double-precision numbers. If x is any number, then the value of CDbl(x) is the double

precision number determined by x.

CInt The function CInt converts long integer, single-precision, and double precision numbers

to integer numbers. If x is any number, the value of CInt(x) is the (possibly rounded)

integer constant that x determines.

 Electrical Engineering Dept. Visual Basic

18

CLng The function CLng converts integer, single precision and double-precision numbers to

long integer numbers. If x is any number, the value of CLng(x) is the (possibly rounded)

long integer that x determines.

CSng The function CSng converts integer, long integer, and double-precision numbers to

single-precision numbers. If x is any number, the value of CSng(x) is the singleprecision

number that x determines.

CStr The function CStr converts integer, long integer, single-precision, double-precision, and

variant numbers to strings. If x is any number, the value of CStr(x) is the string

determined by x. unlike the Str function, CStr does not place a space in front of positive

numbers.[variant]

Str The Str function converts numbers to strings. The value of the function Str(n) is the string

consisting of the number n in the form normally displayed by a print statement.

Val The Val function is used to convert string to double-precision numbers.

 Note: The following function values for different X are given for comparison.

X= 10.999 - 10.999 10.123 -10.123

FIX(X) 10 -10 10 -10

INT(X) 10 -11 10 -11

CINT(X) 11 -11 10 -10

Examples:

 A=Lcase ("My Name Is") → A= my name is

 A=Ucase ("My Name Is") → A=MY NAME IS

 A=" My Name Is": B=Left (A,7) → B=My Name

 C=Right(A,7) : → C=Name Is

 D= Mid (A,3,5) → D=Name

 E=Mid(A,3) → E=Name Is

Examples:

 Print INT(4.1)

Print INT(-4.1)

 Print INT(-4.8)

 Print INT(2.34567*100+0.5)/100

 A=3.14159/180: Print SIN (45*A)/COS(60*A)^2/COS(45*A)/SIN(30*A)^3

 Print INT (-4E-6/2)*INT(5E8/6E15*1.2E10)

 Electrical Engineering Dept. Visual Basic

19

 Print SGN (INT(4/3^8/4^3*3^5*2^5))

Print EXP (LOG(27^1/3+2E2^3*4E-4/4^2))

 Print FIX (4.1)

Print FIX (-4.1)

 Print FIX(-4.8)

Print FIX (2.34567*100+0.5) / 100

Example (3-1): Convert the following arithmetic formula to visual Basic language.

Example(3-2):

Create a Visual Basic project to solve for the roots of the quadratic equation 𝒂 𝑿𝟐 + 𝒃𝑿+ 𝒄 = 𝟎 ,

 using quadratic formula as:

𝑋1 ,2=
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 . Design the program so that the values of a, b, and c are entered into separate

(labeled) text boxes and display 𝑋1 𝑎nd 𝑋2 in separate (labeled) text boxes?

Solution:

1- Place six labels, five text boxes, and one command button on the form. The form should appear

similar to this.

 Electrical Engineering Dept. Visual Basic

20

2- Set the form and object properties:

 Object Property Setting

Form1
Name Form1

Caption Form1

Command Button1
Name Cmd1

Caption Answer

TextBox1
Name Txt1

Text Empty

TextBox2
Name Txt2

Text Empty

TextBox3
Name Txt3

Text Empty

TextBox4
Name Txt4

Text Empty

TextBox5
Name Txt5

Text Empty

Label1
Name Label1

Caption الدستور

Labe12
Name Label2

Caption a =

Labe13
Name Label3

Caption b =

Labe14
Name Label4

Caption c =

Labe15
Name Label5

Caption X1=

Labe16 Name Label6

Caption X2=

3- Attach this code to the command1 button (Answer)

 Electrical Engineering Dept. Visual Basic

21

Private Sub Cmd1_ click ()

Dim a , b , c , X1 , X2

 a= Val (Txt1.text)

b= Val (Txt2.text)

 c= Val (Txt3.text)

 X1=Cdbl (- b + Sqr (b ^ 2 – 4 * a * c)) / (2 * a)

X2= Cdbl (- b – Sqr (b ^ 2 – 4 * a * c)) / (2 * a)

Txt4.text = CStr (X1)

Txt5.text = CStr (X2)

End Sub

4- Running the Application: press F5 or icon

3.12 InputBox Function: InputBox function is used to input a value or character for one variable

from keyboard at running stage.

Variable-Name=InputBox (“Message”,”Title”)

For Example

X=InputBox(“Enter Value of X”,”Example 3”)

 Note: The type value for InputBox function is string value. Box Title

 Message Title

 Write value of Variable X

Example(3-3): Repeat Example(3-2). Using Input Box function to input value of a, b, and c.

 Electrical Engineering Dept. Visual Basic

22

Exercise (3-1): Create a Visual Basic project to find the Perimeter and area of any triangular using the

equation formula as shown below. Design the program so that the values of a, b, and c are entered into

separate (labeled) text boxes and display Perimeter and area in separate (labeled) text boxes?

Perimeter=a+b+c : s= (a+b+c)/2

 area= s*(s−a)*(s−b)*(s−c)

Exercise (3-2): To design a simply calculator, design a form with three text boxes and four command

buttons. The integer value of the first and second number is entered into separate (labeled) text boxes.

Write codes to perform add, subtract, multiply, and divide where pressing on buttons. Display the result

operation in separate TextBox by using the following formula. 4+5=9

Exercise (3-3): Create a Visual Basic project to find the average value of three positive and integer

variables (X1, X2, and X3). Find the deviation {(average-X1), (average-X2), and (average-X3)}. Print

the value of Average and Deviation in PictureBox.

Exercise (3-4): Create a Visual Basic project to enter an angle value (Degree, Minutes, and Seconds)

into separate text boxes Design the program to find the value of angle (in degree only) as the following

equation. Display Angle in separate text box.

Angle= Degree + (Minutes/60) + (Seconds/3600)

Exercise (3-4): Create a Visual Basic project to enter an angle value (used InputBox statement).

Design the program to find the value of angle (in Degrees, Minutes, and Seconds). Display

Degrees, Minutes, and Seconds in PictureBox. Pointer the control objects are used on the form

window.

Message Boxes (MsgBox Function):

The objective of MsgBox is to produce a pop-up message box and prompt to click on a command

button before can continue. This format is as follows:

 Electrical Engineering Dept. Visual Basic

23

 MsgBox “Prompt”, Style Value, “Title”

The first argument, Prompt, will display the message in the message box. The Style Value will

determine what type of command buttons appear on the message box. The Title argument will display

the title of the message board. The Style values are listed below.

Table 1-13.4: Style values

Name Constant Style Value Buttons Displayed

VBOKOnly 0

VBOKCancel 1

VBAbortRetryIgnor 2

VBYesNoCancel 3

VBYesNo 4

VBRetryCancel 5

To make the message box looks more sophisticated, you can add an icon besides the message. There

are four types of icons available in VB6 as shown in Table 2-13.4

Table 2-13.4:Types of Icons

Value Named Constant Icon

16 vbCritical

32 vbQuestion

48 vbExclamation

64 vbInformation

We can use named constants in place of integers for the second argument to make the programs more

readable. In fact, VB6 will automatically shows up a list of named constants where you can select one

of them.

For example: MsgBox "Click OK to Proceed", 1, "Startup Menu" or,

Msgbox "Click OK to Proceed". vbOkCancel,"Startup Menu"

Msgbox "Click Yes to save", 35, "Save"

 Electrical Engineering Dept. Visual Basic

24

Note: The statement “Exit Sub” is defined to stop the program without close the form window. While

the statement “End” is stopped the program return to IDE window.

4. Control Structures
 In this chapter, you will learn how to write VB6 code that can make decision when it process input

from the users, and control the program flow in the process. Decision making process is an important

part of programming because it will help solve practical problems intelligently so that it can provide

useful output or feedback to the user. For example, we can write a VB6 program that can ask the

computer to perform certain task until a certain condition is met, or a program that will reject

nonnumeric data. In order to control the program flow and to make decisions, we need to use the

conditional operators and the logical operators together (see section 3.9) with the If control structure.

To effectively control the VB6 program flow, we shall use the If control structure together with the

conditional operators and logical operators. There are basically three types of If control structures,

namely:

• If …..Then

• If – Then –Else

• Select Case

4.1 If....Then Statement:

This is the simplest control structure which ask the computer to perform a certain action specified by

the VB expression if the condition is true. However, when the condition is false, no action will be

performed. The general format for the (If- Then) statement is

4.1-1 If Condition Then Statement

 Where, Condition is usually a comparison, but it can be any expression that evaluates to a numeric

value, this value as true or false. If condition is True, Visual Basic executes all the statements

following the Then keyword.

Example 4-1: Write a program to enter the value of two variables (X and Y). Find and print the

maximum value for two variables. Design form window and select all the control objects are used.

 Solution(1): or Solution(2):

 Private Sub Command1_Click Private Sub Command1_Click

 Dim X , Y , Max Dim X , Y , Max

X =Val (Text1.Text) X =Val (Text1.Text)

Y =Val (Text2.Text) Y =Val (Text2.Text)

 Max=X If X> Y Then Max= X

 If Y> X Then Max= Y If Y> X Then Max= Y

 Text3.Text= Cstr (Max) Text3.Text= Cstr (Max)

 End Sub End Sub

4.1-2 If condition Then Goto n

Where n : number of statement (must be Positive Integer value) for example:

 Electrical Engineering Dept. Visual Basic

25

Goto 5 , Goto 16 , Goto 2010

Example 4.2: Used (If-Then Goto) condition to write a program for the previous Example 4.1

 Solution(1): Solution(2):

 Dim X ,Y , Max Dim X ,Y , Max

X =Val (Text1.Text) X =Val (Text1.Text)

Y =Val (Text2.Text) Y =Val (Text2.Text)

 Max=X If X> Y Then Max=X : Goto 10

 If X> Y Then Text3.Text= Cstr (Max): Exit Sub Max=Y

 Max=Y 10 Text3.Text= Cstr (Max)

 Text3.Text= Cstr (Max) End Sub

 End Sub

Note: The statement Exit Sub used to stop the program without return to the project window.

4.2 If - Block Statement:

4.2.1 (If – Then – EndIf) statement: The If...Then – EndIf Statement performs an indicated action

only when the condition is True; otherwise the action is skipped.

If condition Then

VB Expression

End If

For example:

Dim X ,Y , Max

X =Val (Text1.Text) : Y =Val (Text2.Text)

Max=X

If X< Y Then

Max=Y

EndIf

Text3.Text= Cstr (Max)

End Sub

4.2.2 (If – Then – Else) statement: The If – Then - Else statement allows the programmer to specify

that a different action is to be performed when a certain action specified by the VB expression if the

condition is True than when the condition is false, an alternative action will be executed. The general

format for the If - Then - Else statement is

If condition Then

VB expression

Else

VB expression

End If

 Electrical Engineering Dept. Visual Basic

26

For example:

Dim X ,Y , Max

 X =Val (Text1.Text) : Y =Val (Text2.Text)

 If X> Y Then

Max=X

Else

Max=Y

EndIf

Text3.Text= Cstr (Max)

End Sub

4.2.3 Nested (If – Then – Else) statement: If there are more than two alternative choices, using

just If – Then - Else statement will not be enough. In order to provide more choices, we can use

If...Then...Else statement inside If...Then...Else structures. The general format for the Nested

If...Then.. Else statement is

Method 1

 If condition 1 Then

 VB expression

 Else

 If condition 2 Then

 VB expression

 Else

 If condition 3 Then

 VB expression

 Else

 VB expression

 End If

 End If

 EndIf

Method 2

If condition 1 Then

VB expression

ElseIf condition 2 Then

VB expression

ElseIf condition 3 Then

VB expression

Else

VB expression

End If

Example 4.3: Write a program to enter the value of variable (Mark). Find the grade using If – Block

statement and display the value of grade in a text box. When the value of variable (Mark) exceed 100,

write a Message Box (Wrong entry, please Re-enter the Mark). Design form window and select all the

control objects are used.

Solution:

1

3

2

 Electrical Engineering Dept. Visual Basic

27

Private Sub Command1_click()

Dim Mark As Single , Grade as String

Mark = Val (Text1.Text)

If Mark >100 Then

Msgbox "Wrong entry, please Re-enter the mark", Vbcritical , " Error"

Text1.Text=" " : Text2.Text= " " : Exit Sub

ElseIf Mark >= 90 and Mark <=100 Then

Grade="Excellent"

ElseIf Mark >= 80 Then

Grade="Very Good"

ElseIf Mark>=70 Then

Grade="Good"

ElseIf Mark>=60 Then

Grade="Medium"

ElseIf Mark>=50 Then

Grade="Pass"

Else

Grade="Fail"

End If

Text2.Text=Grade

End Sub

4.3 Select- Case statement: Select - Case structure is an alternative to If – Then - ElseIf for

selectively executing a single block of statements from among multiple block of statements. The

Select Case control structure is slightly different from the If - ElseIf control structure. The difference

is that the Select Case control structure basically only makes decision on one expression or dimension

while the If - ElseIf statement control structure may evaluate only one expression, each If - ElseIf

statement may also compute entirely different dimensions. Select- Case is more convenient to use than

the If- Else - End If. The format of the Select Case control structure is as follows:

Select Case test expression

 Case expression list 1

 VB statements

 Case expression list 2

 VB Statements

 Case expression list 3

 VB statements

 Case expression list 4

 -

 Case Else

 VB Statements

End Select

Example 4.4: Example 4.3 can be rewritten as follows:

 Electrical Engineering Dept. Visual Basic

28

Solution1

Private Sub Command1_click()

Dim Mark As Single , Grade as String

Mark = Val (Text1.Text)

Select Case Mark

Case 0 To 49

Grade="Fail"

Case 50 To 59

 Grade="Pass"

Case 60 To 69

 Grade="Medium"

Case 70 to 79

Grade="Good

Case 80 To 89

Grade="Very Good"

Case 90 To 99

Grade="Excellent"

Case Else

Msgbox "Wrong entry, please Re-enter the mark", 16

, " Error"

Text1.Text=" " : Text2.Text= " " : Exit Sub

End Select

Text2.Text=Grade

 End Sub

Solution2

Dim Mark As Single , Grade as String

Mark = Val (Text1.Text)

Select Case Mark

Case Is >100 , Is < 0

Msgbox "Wrong entry, please Re-enter the mark", 16

, " Error"

Text1.Text=" " : Text2.Text= " " : Exit Sub Case

Is > = 90

Grade="Excellent"

Case Is > = 80

Grade="Very Good"

Case Is >= 70

Grade="Good

Case Is >= 60

Grade="Medium" Case

Is >=50

Grade="Pass"

Case Else

Grade="Fail"

End Select

Text2.Text=Grade

 End Sub

Examples:

• Select Case X

 Case 3, 5, 8 : Print X Value of X (3 or 5 or 8) only.

 End Select

• Select Case X

 Case 3, 5, 8 To 20: print X Value of X (3 or 5 or 8,9,10,….20) only.

End Select

 Electrical Engineering Dept. Visual Basic

29

• Select Case X

 Case 3: X= X+1: Print X Value of X (3) then print (X=4).

 Case 3,8 To 20 : Print X Ignore statement when value of X=3

End Select

Example 4.5: Design a form with four text boxes and three commands. Design the program so that the

values of num1, num2, and Symbol are entered into separate three text boxes. Write a code to perform

(add, subtract, multiply and divide) when pressing on command (Calculate). Display the result in

separate text box. The command (Clear) used to clear values in text boxes. Click command (Exit) to

end the program and return to the project window.

Solution:

Private Sub Calculate _Click()

 Dim x As Double, y As Double, z As Double

 Dim symbol As String

 x = CDbl(Text1.Text)

 Symbol = Text2.Text

 y = CDbl(Text3.Text)

 Select Case Symbol

 Case " + " : z = x + y

 Case " - " : z = x - y

 Case " * " : z = x * y

 Case " / "

 If y = 0 Then MsgBox "division by zero": Text3.Text = " " : GoTo 10

 z = x / y

 Case Else

 MsgBox "select any symbol(+,-,*,/)"

GoTo 10

 End Select

 Text4.Text = Str(z)

10 End Sub

Private Sub Clear_Click()

Text1.Text = ""

Text2.Text = ""

Text3.Text = ""

Text4.Text = ""

End Sub

Private Sub Exit_Click()

End

End Sub

Exercise 4.1: Create a Visual Basic project to solve for the roots of the quadratic equation

 Electrical Engineering Dept. Visual Basic

30

aX2+ bX+ c= 0, using quadratic formula as: 𝑋1 ,2 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 Design the program so that

the values of coefficient a, b, and c are entered by using input box statement. Display number of roots

and value of roots in text boxes. When the value of coefficient (a) equal to zero or (𝒃𝟐 −𝟒𝒂𝒄) less than

zero, write a message box to enter a new value of coefficients or end the program.

Exercise 4.2: Create a Visual Basic project to find the value of function f(Z) from the equations are

below. Write a code so that the value of variables Y and Z are entered into two boxes. Display the value

of function f (Z) in separate picture box when click command button. Design form window and select

all the control objects are used.

Strictly speaking, you can avoid the test for the last OptionButton control in its group because all choices

are supposed to be mutually exclusive. But the approach I just showed you increases the code's

readability.

A group of OptionButton controls is often hosted in a Frame control. This is necessary when there are

other groups of OptionButton controls on the form. As far as Visual Basic is concerned, all the

OptionButton controls on a form's surface belong to the same group of mutually exclusive selections,

even if the controls are placed at the opposite corners of the window. Actually, you can group your

controls within any control that can work as a container—PictureBox, for example—but Frame controls

are often the most reasonable choice.

5- Loops (Repetition) Structures

Visual Basic allows a procedure to be repeated as many times as long as the processor and memory

could support. This is generally called looping. Looping is required when we need to process something

repetitively until a certain condition is met. In Visual Basic, we have three types of Loops, they are

• For.....Next loop,

• Do loop

5-1 For....Next Loop

The format is:

For counter = Start To End Step [Increment]

 Electrical Engineering Dept. Visual Basic

31

 One or more VB statements

Next [counter]

The arguments counter, start, end, and increment are all numeric. The increment argument can be either

positive or negative. If increment is positive, start must be less than or equal to end or the statements in

the loop will not execute. If increment is negative, start must be greater than or equal to end for the

body of the loop to execute. If steps isn’t set, then increment defaults to 1.

In executing the For loop, visual basic:

1. Sets counter equal to start.

2. Tests to see if counter is greater than end. If so, visual basic exits the loop (if increment is

negative, visual basic tests to see if counter is less than end).

3. Executes the statements.

4. Increments counter by 1 or by increment, if it’s specified.

5. Repeats steps 2 through 4.

For Example:

1- For I=0 To 10 step 5

Statements

Next I

2- For counter = 100 To 0 Step -5

Statements

Next counter

Example 5-1: Design a form and write code to find the summation of numbers (from 0 to 100).

Solution:

Private Sub form_load()

Form1.show

Dim I As Integer,Total As Integer

 For I = 0 To 100

Total= Total +I

Next I

Print "Total=";Total

End Sub

Example 5-2: Design a form and write code to find the summation of even numbers (from 0 to 100).

Solution:

Private Sub form_load()

Form1.show

Dim I As Integer,Total As Integer

 For I = 0 To 100 step 2

Total= Total +I

Next I

Print "Total=";Total

End Sub

Example 5-3: Design a form and write code to find the summation of odd numbers (from 0 to 100).

Solution:

 Electrical Engineering Dept. Visual Basic

32

Private Sub form_load()

Form1.show

Dim I As Integer,Total As Integer

 For I = 0 To 100

If I mod 2 =1 then Total= Total +I

Next I

Print "Total=";Total

End Sub

5-2 Do –Loop:

Use a Do loop to execute a block of statements and indefinite number of times. There are several

variations of Do…Loop statement, but each evaluates a numeric condition to determine whether to

continue execution. In the following Do..Loop, the statements execute as long as the condition is True.

5-2-1 Do While ..Loop

The formats are

Do While condition

Block of one or more VB Statement

Loop

When Visual Basic executes this Do..Loop, it first tests condition. If condition is False, it skips past all

the statements. If it’s True, Visual Basic executes the statements and then goes back to the Do while

statement and tests the condition again. Consequently, the loop can execute any number of times, as

long as condition is True. The statements never execute if initially False.

For Example: Loop counts from 0 to 100.

Dim num As Integer, Total

num = 0

Do While num <= 100

Total=Total +num

num = num + 1

Loop

Print Total

5-2-2 Do…Loop While:

Another variation of the Do..Loop statement executes the statements first and then tests condition after

each execution. This variation guarantees at least one execution of statements. The formats are

Do

Block of one or more VB Statement

Loop While condition

 Electrical Engineering Dept. Visual Basic

33

For Example: Loop counts from 0 to 100.

Dim num As Integer, Total

num = 0

Do

Total=Total +num

num = num + 1

Loop While num <= 100

Print Total

5-2-3 Do Until ….Loop

Unlike the Do While...Loop repetition structures, the Do Until... Loop structure tests a condition for

falsity. Statements in the body of a Do Until...Loop are executed repeatedly as long as the loop

continuation test evaluates to False.

The formats are

Do Until condition

Block of one or more VB Statement

Loop

For Example: Loop counts from 0 to 100.

Dim num As Integer, Total

 num = 0

Do until num >100

Total=Total +num

num = num + 1

Loop

Print Total

5-2-4 Do… Loop Until

The formats are

Do

Block of one or more VB Statement

Loop Until condition

For Example: Loop counts from 0 to 100.

Dim num As Integer, Total

 num = 0

Do

Total=Total +num

num = num + 1

Loop until num>100

Print Total

5-3 Existing Loop:

The exit statement allows you to exit directly from For Loop and Do Loop, Exit For can appear as many

times as needed inside a For loop, and Exit Do can appear as many times as needed inside a Do loop (

 Electrical Engineering Dept. Visual Basic

34

the Exit Do statement works with all version of the Do Loop syntax). Sometimes the user might want

to get out from the loop before the whole repetitive process is executed; the command to use is Exit

For To exit a For.....Next Loop or Exit Do To exit a Do… Loop, and you can place the Exit For or Exit

Do statement within the loop; and it is normally used together with the If....Then.....statement.

• Exit For

The formats are:

For counter= start To end step (increment)

Statements

Exit for

Statement

Next counter

• Exit Do

The formats are

Do While condition

Statements

Exit Do

Statements

Loop

For its application, you can refer to example:

1- Private sub Form Load_()

Form1.show

Dim n as Integer

For n=1 to 10

If n>6 then Exit For

Picture1.Print n

 Next

End Sub

1- Private sub Form_Load()

Form1.show

Dim x As Integer

x=0

Do While x < 10

Print x

x = x + 1

If x = 5 Then

Print "The program is exited at x=5"

Exit Do

End If

Loop

 End Sub

5-4 Nested Loop: The nested loops are the loops that are placed inside each other. The most inner loop

will be executed first, then the outer ones. These are examples of the nested loops.

 Electrical Engineering Dept. Visual Basic

35

 Possible Error (Not Possible)

 For J=1 to 5 For K=1 to 5

 Statement Statement

 For I=1 to 5 For I=1 to 5

 Statement Statement

 Next I Next K

 Statement Statement

 Next J Next I

 Example5-4: For a simply supported beam shown in Fig below. By using the input box statement, enter

the value of length of the beam (L), concentrated load (P), distance (a) from support, modulus of elasticity

(E) and moment of inertia (IG). Write a code program to find the value of deflection at distance (x) from

support, where x increased by (0.01L) from the following equation. Print the deflection value in separate

text box. Designs a form and select all control object are used.

Solution:

Private Sub Command1_click()

Dim L, P, E, IG, a, X, Df

L=Val (Inputbox (“L=”))

P=Val (Inputbox (“P=”))

IG=Val (Inputbox (“IG=”))

E= Val (Inputbox (“E=”))

a=Val (Inputbox (“a=”))

 For x=0 To L Step 0.01 *L

If x< a Then

Df=p*X/(6*E*IG)*(3*L*a-3*a^2-X^2)

ElseIf X<= L- a Then

Df= p*a/(6*E*IG)*(3*L*X-3*X^2-a^2)

Else

 Msgbox” Value of x greater than L-a” : Exit For

EndIf

Picture1.print X; Df

Next X

End Sub

L=3: P=1:a=1:E=1: IG=1

x

L

a a

p p

 Electrical Engineering Dept. Visual Basic

36

Example 5-5: Design a form with one command and two text boxes. Enter the value of integer number

(N) in separate text box. Write a code program to check if the number (N) is a prime Number or not.

Display the “It is not a prime number” or “It is a prime number” in separate text box.

Solution:

Private Sub Command1_Click()

Dim N, D As Single

Dim tag As String

N = Val(Text1.Text)

Select Case N

Case Is < 2

Text2.text = "It is not a prime number"

Case 2

Text2.text = "It is a prime number"

Case Is > 2

D = 2

Do

If N / D = Int(N / D) Then

Text2.text = "It is not a prime number"

 tag = "Not Prime"

Exit Do

End If

D = D + 1

Loop While D <= N - 1

If tag <> "Not Prime" Then

Text2.text = "It is a prime number"

End If

End Select

End Sub

Example 5-6: Create a Visual Basic Project to find the value of the following series.

𝜋2

6
= 1 +

1

22
+

1

32
+

1

42
+ ⋯…….

Write the code program so that the number of terms (N) is entered into text box. Display the result (Pi)

in separate text box when click on command (Find Pi).

Solution:

Private Sub Command1_click()

Dim S as double, N , I , T

N=val(text1.text) : S= 0.0

For I=1 To N

T=1 / I^2

 Electrical Engineering Dept. Visual Basic

37

S=S+T

Next

Pi=SQR (S*6)

Text2.text=Str (Pi)

End Sub

Example 5-7: Create a Visual Basic Project to find the value of the following series.

𝑆𝑖𝑛𝑒(𝑥) = 𝑥 −
𝑥3

3!
+

𝑥5

5!
−

𝑥7

7!
+ ⋯………….

Write the code program so that the value of angle (X) is entered into text box. Estimate the value of

series (Sin(x)) so that the absolute value of any term is greater or equal than 10-6. Display the required

number of terms (N) which it used in this series in a separate text box and display the result of series

(Sin(x)) in another separate text box.

Solution:

 Private Sub Command1_click()

Dim X, Sx, I, J, T, K, N, Fact

X = Val(Text1.Text): X = X * 3.14 / 180

N = 1: K = 1: Sx = 0

10 Fact = 1

For I = 1 To 2 * N - 1

Fact = Fact * I

Next I

T = X ^ (2 * N - 1) / Fact

If Abs(T) >= 0.000001 Then

Sx = Sx + T * K

K = -K: N = N + 1

GoTo 10

Else

Text2.Text = Str(N)

Text3.Text = (Sx)

Create a Visual Basic Project to find the value of the following series.

𝑆𝑢𝑚 = (∑(𝑎 ∗ 𝑖)) + 𝑏

𝑖=𝑁

𝑖=1

Write the code program so that the value of constants (a, and b) are entered into text boxes. When the

users click checkbox, calculate the value of series (where the total number of terms is equal 20). When

the user unchecked the checkbox, the number of terms (N) is entered into input box and calculate the

value of series. Display the value of series (Sum) in a separate text box.

Solution:

 Electrical Engineering Dept. Visual Basic

38

Private Sub Command1_Click ()

Dim a, b, Sum, N

a = Val (Text1.Text)

b = Val (Text2.Text)

Sum = b

If Check1.Value = 1 Then

For I = 1 To 20

Sum = Sum + a * I

Next

Else

N = Val (inputbox (“No. of terms=”)) For

I = 1 To N

Sum = Sum + a * I

Next

End If

Text3.Text = Str (Sum)

End Sub

Exercise 5-1: Create a Visual Basic Project to find the value of the following series.

𝐶𝑜𝑠(𝑥) = 𝑥 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯………….

Write the code program so that the value of angle (X) is entered into text box and the number of terms

(N) is entered into input box. Calculate the value of series and display the result of series (Cos(x)) in

another separate text box.

Exercise 5-2: Create a Visual Basic Project to find the value of the following series.

Write the code program so that the value of (X) is entered into text box. Estimate the value of series (Y)

until the absolute value of any term is less than 10-6. Display the required number of terms (N) which it

used in this series in a separate text box and display the result of series (Y) in another separate text box.

5-5 Using ListBox and ComboBox Controls In Visual Basic 6:

The ListBox will display a single column of strings, referred to as items. The items to appear initially

can either be specified at design time with the List property or set with code in the Form_Load event

procedure. Then code is used to access, add, or delete items from the list. If the number of items exceed

the value that be displayed, scroll bars will automatically appear on the control. These scroll bars can

be scrolled up and down or left to right through the list.

 Electrical Engineering Dept. Visual Basic

39

A ComboBox is best through of as a text box with a help list attached. With an ordinary textbox, the

user must type information into the box. With a combobox, the user has the option of either typing in

information or just selecting the appropriate piece of information from a list. The two most useful types

of combobox are denoted as style property combobox as shown in Figure below.

With a style 1 combo box, the list is always visible. With style 0 or 2 combobox, the list drops down

when the user clicks on the arrow. In either case, when an item from the list is highlighted, the item

automatically appears in the text box at the top and its value is assigned to the text property of the combo

box. The items to appear initially can either be specified at design time with the combo property or set

with combo_change() event procedure directly.

ComboBoxes have essentially the same properties, event and methods as ListBoxes.

The following Figure lists some of the common ListBox &ComboBox properties and methods.

Property Description

Properties

Enabled
 By setting this property to True or False user can decide

whether user can interact with this control or not

List

 String array. Contains the strings displayed in the drop-down

list. Starting array index is 0. Use CTRL+Enter to insert

values.

Sorted
 Boolean. Specifies whether the ListBox &ComboBox items are

sorted or not.

Style Integer. Specifies the style of the ListBox &ComboBox

appearance

Text String. Specifies the selected item in the ComboBox.

Visible
 Boolean. Specifies whether ListBox &ComboBox is visible or

not at run time

Event Procedures

Change Called when text in ComboBox is changed

Click Called when the ListBox &ComboBox is clicked

Methods Description Example

AddItem Add an item to the ListBox &ComboBox List1.additem str (x):Combo1.additem str (x)

ListCount
Integer. Contains the number of drop-

down list items

X=List1.listcount: Y=Combo1.listcount

 Electrical Engineering Dept. Visual Basic

40

ListIndex

Integer. Contains the index of the selected

ListBox &ComboBox item. If an item is

not selected,

ListIndex is -1

X=List1.ListIndex : Y=Combo1.ListIndex

List

String array. Contains the strings

displayed in the drop-down list. Starting

array index is 0.

X=List1.List(1): Y=Combo1.List(4)

X=List1.List(List1.ListIndex)

Text
String. Specifies the selected item in the

ListBox &ComboBox.

X=List1.Text: Y=Combo1.Text

Clear Removes all items from the ListBox

&ComboBox

List1.Clear: Combo1.Clear

RemoveItem
Removes the specified item from the

ListBox &ComboBox

List1.RemoveItem 1: Combo1. RemoveItem 5

List1.RemoveItem List1.ListIndex

NewIndex

Integer. Index of the last item added to the

ListBox &ComboBox. If the ComboBox

does not contain any items , NewIndex is

-1

X=list1.NewIndex: Y= Combo1.NewIndex

5-5.1 Adding items to a ListBox: It is possible to populate the list at design time or run time

• Design Time : To add items to a list at design time, click on List property in the property box and

then add the items. Press CTRL+ENTER after adding each item as shown below.

Example 5-9: Design a form with one list box, two textboxes and two command buttons. Write code

for the following-events.

1- Form_Load event, to add items.(5)

2- In click event of listbox,to add item to text1 from list box if item is selected

3- In click event of command1 (Remove), to remove item from list box if item is selected and

display the number of items in the listbox into text2.

4- In click event of command2 (Clear), to clear items from list box.

 Electrical Engineering Dept. Visual Basic

41

Private Sub List1_Click()

 Text1.text=List1.Text or Text1.Text=List1.List(List1.ListIndex).

EndSub

Private Sub Command1_Click()

List1.RemoveItem List1.ListIndex

Text2.Text = List1.ListCount

EndSub

Private Sub Command2_Click()

List1.Clear

EndSub

Example 5-10: Design a form with two list boxes, one label, and one command buttons. Write code for

the following-events.

1- Form_Load event, to add items (n=100) to list1.

2- In click event of command1 (Sum), to Sum items from list1 and add to list2 at each step. Exit

loop if (Sum=120).

3- In click event of list2, to display number of items to label1

Solution:

Private Sub Form_Load()

Dim I

For I=1 To 100

List1.AddItem Str(I)

Next I

End sub

Private Sub Command1_click()

Dim I, Sum

For I=1 to 100

 Sum=Sum+I or Sum-Sum + list1.list (I-1)

List2.AddItem Str(Sum)

If Sum=120 Then Exit For

Next

Solution:
Private Sub Form_Load()

Dim I

For I = 0 To 4

List1.AddItem InputBox("")

Next

End Sub

 Electrical Engineering Dept. Visual Basic

42

End sub

Private Sub List2_Click()

Label1.caption=List2.listcount

End Sub

6- Arrays in Visual Basic 6
An array is a collection of simple variables of the same type to which the computer can efficiently assign

a list of values. Array variables have the same kinds of names as simple variables. An array is a

consecutive group of memory locations that all have the same name and the same type. To refer to a

particular location or element in the array, we specify the array name and the array element position

number. The Individual elements of an array are identified using an index. Arrays have upper and lower

bounds and the elements have to lie within those bounds. Each index number in an array is allocated

individual memory space and therefore users must evade declaring arrays of larger size than required.

We can declare an array of any of the basic data types including variant, user-defined types and object

variables. The individual elements of an array are all of the same data type.

6-1 Declaring arrays: Arrays may be declared as Public (in a code module), module or local. Module

arrays are declared in the general declarations using keyword Dim or Private. Local arrays are declared

in a procedure using Dim. Array must be declared explicitly with keyword "As".

There are two types of arrays in Visual Basic namely:

• 6-1-1 Fixed-Size Array: The size of array always remains the same-size doesn't change during

the program execution. When an upper bound is specified in the declaration, a Fixed array is

created. The upper limit should always be within the range of long data type.

One Dimension Array:

Declaring a fixed-array, if array-Name is the name of an array variable and N is a whole number, then

the statement

Dim ArrayName (N) As Var Type

Where, the Dim statement is said to dimension the array and (N) is the range of the array. The array

holds either all string values or all numeric values, depending on whether Var Type is string or one of

the numeric type names.

For example:

Dim Num (5) As Integer

In the above illustration, num is the name of the array, and the number 5 included in the parentheses is

the upper limit of the array. The above declaration creates an array with 6 elements, with index numbers

running from 0 to 5.

The numbers inside the parentheses of the individual variables are called subscripts, and each

individual variable is called a subscripted variable or element. The elements of an array are assigned

successive memory locations. The following figure shows the memory location for the array Num(5)

http://visualbasic.freetutes.com/learn-vb6/lesson6.1.html
http://visualbasic.freetutes.com/learn-vb6/lesson6.1.html

 Electrical Engineering Dept. Visual Basic

43

Num (5)
Num (0) Num (1) Num (2) Num (3) Num (4) Num (5)

1 3 -10 5 3 2

Example 6-1: Write a code program to read of one dimensional array A(5). Print the value and position

of each element.

𝐴 =

[

2
4
5
6
1]

Solution 1:

Dim A(5) as single

Picture1.cls

Picture1.Print "position"; Space (3); "Value of element"

For I=1 To 5

A(I)= Val(InputBox(((" "

Next I

For I= 1 to 5

Picture1.Print I; Space (11); A(I)

Next

Solution 2:

Dim A(5) as single

Picture1.cls

Picture1.Print "position"; Space (3); "Value of element"

For I= 1 To 5

A(I)= Val(InputBox(" "))

Next I

For I= 0 to 5

Picture1.Print I; Space (11); A(I)

Next

 Note: In solution 2, The type value of array (A) as single, then the default value of A(0)=0,If Type

value of array(A) as Variant, then empty value in position A(0).

 Electrical Engineering Dept. Visual Basic

44

Example 6-2: Suppose A is a one dimension array with 10 elements is entered into listbox. Write a

program segment to find the location J such that A (J) contains the largest value in A. Display the

Largest value and the location into textboxes.

Solution:

Dim A(10) as single

For I=1 To 10

A(I)=Val(list1.list(I-1))

Next

Max=A(1) : P=1

For J=1 to 10

If A(J)> Max Then

Max=A(J) : P= J

EndIf

Next

Text1.text= Str(Max)

Text2.text= Str(P)

End Sub

Example 6-3: Suppose A is a one dimension array with 10 elements is entered into listbox. Write a

program segment to create the one dimension array (B) contains the even value in array (A). Display

the new array (B) into list box2.

Solution:

List2.Clear

Dim A(10) As Single, B(10) As Single

For I = 1 To 10

A(I) = Val(List1.List(I - 1))

Next

For I = 1 To 10

If A(I) Mod 2 = 0 Then

 k = k + 1

 B(k) = A(I)

 Electrical Engineering Dept. Visual Basic

45

End If

Next

For I = 1 To k

List2.AddItem Str(B(I))

 Next

End Sub

Example 6-4: Suppose X, Y is linear arrays each with 7 elements into inputbox which element from

X and Y in one row respectively. Write a program segment to compute the value of (S) from the

following formula. Display the value of (S) into textbox.

Solution:

Dim X(7) As Single, Y(7) As Single

For I=1 To 7

X(I)= Val (InputBox(“X(i) ”))

Y(I)= Val (InputBox(“Y(i)”))

Next I

For I=1 To 7

S1=S1+X(I)^2 : S2=S2+Y(I)^2 : S3= S3 +X(I)*Y(I)

Next I

S= Sqr(S1) * Sqr(S2) / Sqr(S3)

Text1.text=Str(S)

End Sub

Example 6-5: Suppose A is a one dimension array with (10) elements. Write a code program which

sorts A so that its elements are increasing and sorters into a new array B. Display the origin array (A)

and create array (B) into picturebox which element from A and B in one row respectively.

Solution:

Dim A (10), B(10)

For I=1 To 10

A (I) =Val (InputBox (“A=”)) : B (I) = A (I)

 Next

For I = 1 To 9

For J = I+1 To 10

If B(J) < B(I) Then

D=B(I)

B(I)=B(J)

B(J)=D

EndIf

Next J , I

 Electrical Engineering Dept. Visual Basic

46

For I=1 To 10

Picture1.Print A (I); space (4); B (I)

Next

Two Dimensional Arrays:

Arrays can have multiple dimensions. A common use of multidimensional arrays is to represent tables

of values consisting of information arranged in rows and columns. To identify a particular table element,

we must specify two indexes: The first (by convention) identifies the element's row and the second (by

convention) identifies the element's column.

Tables or arrays that require two indexes to identify a particular element are called two dimensional

arrays. The following statement declares a two-dimensional array (3 by 3) within a procedure.

Dim Avg (3, 3) as Single

Avg (Row, Col.)

Avg (0,0) Avg (0,1) Avg (0,2) Avg (0,3)

Avg (1,0) Avg (1,1) Avg (1,2) Avg (1,3)

Avg (2,0) Avg (2,1) Avg (2,2) Avg (2,3)

Avg (3,0) Avg (3,1) Avg (3,2) Avg (3,3)

Avg (3, 3)

2 6 1 0

3 1 6 -3

7 3 1 5

5 4 -2.5 9

It is also possible to define the lower limits for one or both the dimensions as for fixed size arrays.

Example 6-6: Write a code program to read of two dimensional array A(3,4) on a row by row. Print

the value and position of each element.

Solution:

 Dim A(3,4) As Single

 For I=1 To 3 (Rows)

 For J= 1 To 4 (Columns)

A(I,J) =Val(InputBox(“”))

Next J

Next I

For I=1 To 3

For J= 1 To 4

Picture1.Print A(I, J) ; Space(2) ;

Picture2.Print I ; " , " ; J ; Space(2) ;

 Electrical Engineering Dept. Visual Basic

47

Next J

Picture1.Print : Picture2.Print

Next I

Example 6-7: Write a code program to read of two dimensional array A(3,4) on a column by column.

Print the value and position of each element.

Solution:

 Dim A(3,4) As Single

 For J=1 To 4 (Columns)

 For I= 1 To 3 (Rows)

A(I,J) =Val(InputBox(“”))

Next I

Next J

For J=1 To 4

For I= 1 To 3

Picture1.Print A(I, J) ; Space(2) ;

Picture2.Print I ; " , " ; J ; Space(2) ;

Next I

Picture1.Print : Picture2.Print

Next J

Example 6-8: Write a code program to create a two dimensional array N (5X2) into List Box on row

by row. Print the values of array N.

Solution:

Dim N(5,2) As Single

K=0

For I = 1 To 5

For J=1 To 2

N(I,J)= Val (List1.List (K))

K=K+1

Next J, I

For I=1 To 5

For J= 1 To 2

Picture1.Print N(I, J) ; Space(2) ;

Next J : Picture1.Print : Next I

Example 6-9: Suppose N is a (5x2) matrix array is entered into ListBox on row by row. Write a

program segment to find the location I and J such that N (I,J) contains the largest value in N. Print the

values of array N. Display the Largest value and the location into textboxes.

Solution:

Dim N(5,2) As Single

K=0

 Electrical Engineering Dept. Visual Basic

48

For I = 1 To 5

For J=1 To 2

N(I,J)= Val (List1.List (K))

K=K+1

Next J, I

Max = N(1, 1): R = 1: C = 1

For I = 1 To 5

For J = 1 To 2

If N(I, J) > Max Then

Max = N(I, J)

R = I: C = J

End If

Next J , I

For I = 1 To 5

For J = 1 To 2

Picture1.Print N(I, J); Space(2);

Next J: Picture1.Print: Next I

Text1.Text = Str(Max)

Text2.Text = Str(R)

Text3.Text = Str(C)

Example 6-10: Write a code program to defined the array H (5,5) Calculate the elements of the

numeric array (H). Each element of H is determined by the formula (ℎij = i + j − 1). Create the one

dimensional array X contains the elements of array H(5,5) on row by row. Print the array X into List

Box.

Solution:

Dim H(5,5) As Single , X(25) As Single

For I=1 To 5

For J=1 To 5

H(I,J)=(I+J-1)

Next J ,I

For I =1 To 5

For J=1 To 5

K=K+1

X(K) =H (I , J)

Next J , I

For I=1 To K

List1.AddItem str(X(I))

Next I

 Electrical Engineering Dept. Visual Basic

49

Example 6-11: Write a code program to read the elements of the array T(5,3) on a row by row.

Calculate the SUM of elements in each row and stored in column 4. Print a new array T(5,4) and the

sum of all individual row sums, the cumulative sum for all rows.

Solution:

Dim T (5, 4) As Single

For I =1 To 5

For J=1 To 3

T(I,J)=Val (InputBox(“”))

Next J, I

For I=1 To 5

Sum=0

For J=1 To 3

Sum=Sum + T(I ,J)

Next J

T (I,4) = Sum

Total=Total +T(I,4)

Next I

For I=1 To 5

For J=1 To 4

Picture1.print T (I , J);

Next J: Picture1.Print : Next I

Text1.text=Str(Total)

End Sub

Example 6-12: Suppose W is a two dimension array with (6,4). Write a code program which sorts W

on row by row so that its elements are increasing (Ascending) and sorters into a same array. Display

the new array (W) into picturebox which element.

Solution:

Dim W(6,4) as Single

For I=1 To 6

For J=1 To 4

W (I, J)= Val (InputBox(“”))

Next J , I

For I =1 To 6

For J= 1 To 3

For K= J+1 To 4

If W(I,K) < W(I,J) Then

C=W(I,J)

W(I,J)=W(I,K) : W(I,K)=C

End If

Next K , J, I

For I=1 To 6

 Electrical Engineering Dept. Visual Basic

50

For J =1 To 4

Picture1.print W(I,J);

Next J : Picture1.Print : Next I

Example 6-13: : Suppose W is a two dimension array with (6,4). Write a code program which sorts

W on column by column so that its elements are increasing (Ascending) and stores into a same array.

Display the new array (W) into picturebox which element.

Solution:

Dim W(6,4) as Single

For I=1 To 6

For J=1 To 4

W (I, J)= Val (InputBox(“”))

Next J , I

For J =1 To 4

For I= 1 To 5

For K= I+1 To 6

If W(K,J) < W(I,J) Then

C=W(I,J)

W(I,J)=W(K,J) : W(K,J)=C

End If

Next K , I, J

For I=1 To 6

For J =1 To 4

Picture1.print W(I,J);

Next J : Picture1.Print : Next I

9- Sub Procedure and Function Procedure

Most computer programs that solve real-world problems are much larger than those presented in the

first few chapters. Experience has shown that the best way to develop and maintain a large program is

to construct it from smaller pieces each of which is more manageable than the original program. This

technique is called divide and conquer. This chapter describes many key features that facilitate the

design, implementation, operation and maintenance of large programs.

Functions and Subroutines are programs designed for specific task, and could be called from the main

program or from sub-procedures without pre definition or declaration. Users are allowed to call in any

number of times which save the main program space, since it avoids reputation of code these subroutines

could be designed by user or could be previously built. The concepts and descriptions are summarized

in the following table.

Item Subroutine Function

Code Sub Name (arguments)

Statements

End Sub

Function Name (arguments)

Statements

End Function

 Electrical Engineering Dept. Visual Basic

51

Remark • Need call statement

• Return values by arguments

• Return many values (arguments)

• Used for Input/output,

 condition treatment

• Could be used without arguments.

• Used in arithmetic statement

• Return value by its name

• Return one value

• Used for arithmetic’s or conversion of

variable type.

Call Statement Call Name(value1,value2,,,,) Z=name(value1)

Exit statement Exit Sub Exit Function

9.1 Sub Procedures

 Sub procedure are created with the add procedure dialog (displayed when add procedure is selected

from the tools menu). The add procedure menu item is grayed unless the code window is visible. Figure

(9-1) displays the add procedure dialog. The procedure name is entered in TextBox Name and can be

any valid identifier Frame Type contains option buttons for selecting the procedure type (Sub or

Function). Frame scope contains option buttons for selecting keyword public or keyword private that

will procedure, we will use keyword private, which also preceded our event procedures.

Figure (9-1): add procedure dialog

Once a valid name has been type into textbox name

(add) has been passed, the procedure appears in the

code window. Figure (9-2) shows procedure (add) which we created with the add procedure dialog. The

code representing (add) in figure (9-2) is called the sub procedure definition.

Figure (9-2): A sub procedure created with the add

 Procedure dialog.

Sub Procedures can also be created by typing the sub procedure directly into the code window. Once a

line such as

 Electrical Engineering Dept. Visual Basic

52

Private Sub add2 ()

Is typed and the enter key pressed, visual basic automatically creates the end sub line. Figure (9-3)

shows the results when (add2) is typed directly into the code window.

The line

Private Sub add2 ()

is the sub procedure header. The header contains keyword private, keyword sub, the procedure name,

and parentheses. Any declarations and statements the programmer places between the header and end

sub form the sub procedure body. Every time the sub procedure is called (or invoked) the body is

immediately executed.

Figure (9-3): A Sub procedure created by typing

directly into the code window.

Execution of the sub procedure terminates when end sub is reached. Program execution then continues

with the statement immediately following the call to (add2).

All Sub procedure definitions contain parentheses which may be empty (e.g., add2). Consider the

following sub procedure:

Private Sub Calculate (a as single, b as double)

Picture1.print a*b

End Sub

Which declares two parameter variables, (a, and b), in the parameter list. Parameter variables are

declared using the As keyword. Parameter variables are not explicitly given a type default to Variant.

Parameter variables receive their values from the procedure call and are used in the procedure body The

call to Calculate could also have be written as

Call Calculate (30,10.0)

Which uses keyword Call and encloses the arguments passed in a set of parentheses. The arguments

passed can be variable names as well, for example, the call

 Call Calculate (a, b)

Would pass a, and b to Calculate.

Example 9-1: Write a code program to read three integer numbers. Using a define sub procedure

(Minimum) to determine the smallest of three integers. Display the smallest value in textbox.

Solution:

Private Sub Command1_Click()

Dim Num1 As Single, Num2 As Single, Num3 As Single

Num1 = Fix(Text1.Text)

Num2 = Fix(Text2.Text)

 Electrical Engineering Dept. Visual Basic

53

Num3 = Fix(Text3.Text)

Call Minimum(Num1, Num2, Num3, min)

Text4.Text = Str(min)

End Sub

Private Sub Minimum(Num1, Num2, Num3, min)

min = Num1

If Num2 < min Then min = Num2

Example 9-2: Write a code program to read a one dimension array A (10). Using a define sub

procedure (Sort) to Sort (increasing) the array A. Display the new array into picturebox.

Solution:

If Num3 < min Then min = Num3

End Sub

 Electrical Engineering Dept. Visual Basic

54

 9.2 Function Procedures: function procedures and sub procedures share the same characteristics, with

one important difference- function procedures return a value (i.g., give a value back) to the caller, whereas

sub procedures do not.

 Function Procedures can be created with the add procedure dialog shown in figure (9-1) by selecting

function. Figure (9-4) shows a function procedure. Fact, created with the add procedure dialog. Fact

implicitly returns variant.

Private Sub Command1_Click()

Dim A(10) As Single

For I = 1 To 10

A(I) = Val(List1.List(I - 1))

Next I

Call Sort(A, 10)

For I = 1 To 10

Picture1.Print A(I)

Next I

End Sub

Private Sub Sort(A, n)

For I = 1 To n - 1

For J = I + 1 To n

If A(J) < A(I) Then

D = A(I)

A(I) = A(J)

A(J) = D

End If

Next J, I

End Sub

 Electrical Engineering Dept. Visual Basic

55

Figure (9-4): Function procedure created with add

procedure dialog

Fact could also have been created by typing the function procedure directly into the code window. The

line

Private Function Fact()

is the function procedure header. The header contains the keyword function, the function name and

parentheses. The declarations and statements that the programmer will insert between the header and

End Function form the function procedure body, Fact is invoked with the line.

Result= Fact()

When a function procedure name (such as Fact) is encountered at run time, the function procedure is

called, causing its body statements to execute. Consider the complete definition for Fact

Private Function Fact(N)

Fact=N^2

End Function

A function procedure return value is specified in the body by assigning a value to the function procedure

name, as in

Fact=N^2

Then returns (along with the value returned) to the calling statement

Result=Fact (N)

And the return value is assigned to variable result. Program execution then continues with the next

statement after the call to Fact.

All function procedure definitions contain parentheses, the parentheses may be empty (e.g. Fact) or may

contain one parameter variable declarations. Consider the following function procedure:

Private Function Area (s1 as single,s2 as single)

Area=s1*s2

End Function

Which declare two parameter variables s1, and s2. Area’s return type is variant. Area is called with

the statement

Square=area(8.5, 7.34)

The value 8.5 is stored in s1 and the value 7.34 is stored in s2.

Example 9-3: Write a code program to read three integer numbers. Using a define sub Function (Min)

to determine the smallest of three integers. Display the smallest value in textbox.

 Solution:

 Electrical Engineering Dept. Visual Basic

56

Private Sub Command1_Click()

Dim Num1 As Single, Num2 As Single, Num3 As Single, Result As Single

Num1 = Fix(Text1.Text)

Num2 = Fix(Text2.Text)

Num3 = Fix(Text3.Text)

Result =Min(Num1, Num2, Num3)

Text4.Text = Str(Result)

 End Sub

Private Function Min(Num1, Num2, Num3)

Min = Num1

If Num2 < Min Then Min = Num2

 Example 9-4: Write a code program to input the value of N. Using a define sub function fact to

determine(N!). Display the result into text box.

 Solution:

Private Sub Command1_Click()

Dim N As Single, Result As Double

N = Val(Text1.Text)

Result = Fact(N)

Text2.Text = Str(Result)

End Sub

Private Function Fact(N)

Dim I, F

F = 1

For I = 1 To N

F = F * I

Next

Fact = F

End Function

If Num3 < Min Then Min = Num3

End Function

 Electrical Engineering Dept. Visual Basic

57

File Handling

A file is a collection of bytes stored on the disk with a given name (called as filename). Every development

tool provides access to these files on the disk. In this chapter we will understand how to access and

manipulate files using Visual Basic.

There are three special controls, called as File controls, which deal with files and directories. We will also

understand how to use these controls in this chapter.

File handling

The following are three important steps in handling a file.

• Opening the file

• Processing the file, i.e. either reading the content of the file or writing the required data

into file or both.

• Closing the file

http://geospatialtraining.com/wp-content/uploads/2011/09/python_file1.png

 Electrical Engineering Dept. Visual Basic

58

Defining new terms

• Record: one logical section of a file that holds a related set of data. If the file

contains Student information, a record would hold the information on one student:

name, address, studentID, etc. If there are 5,000 students registered, the file contains

5,000 records.

• Field: part of a record that defines a specific information. In the Student record,

FirstName, LastName, StudentID, are fields. The field is the lowest element in the file.

Even if the information consists of one character, Sex is M or F, it is still considered a

separate field. The field is the equivalent of the variable - we call it a variable when it

is used to store data in memory and call it a field when it stores in a file.

• I/O: stands for Input/Output. Whenever you work with a file you have to have

ways of reading data from the file (that'sInput) and ways of writing data to the file

(that's Output). I/O operations consist of all those commands that let you read and

write files.

Types of files

There are basically three types of files you can work with:

• Sequential file: this is a file where all the information is written in order from the

beginning to the end. To access a given record you have to read all the records stored

before it. It is in fact like listening to a tape - you can go forward or back but you can't

jump directly to a specific song on the tape. In fact, in the old days, magnetic tape was

the most commonly used medium to store data and all files were organized this way.

Now, it is still useful when there is a small amount of data to store, a file of application

settings, for example. It can even be of use when there is a large amount of data to be

stored, provided it all has to be processed at one time, eg: a file of invoices to produce

a statement at month-end.

• Random file: a file where all records are accessible individually. It is like a CD

where you can jump to any track. This is useful when there is a large quantity of data

to store and it has to be available quickly: you have to know if a part is in stock for a

customer who is on the phone; the program doesn't have time to search through 10,000

records individually to locate the correct one. This method of storage became popular

when hard-disk drives were developed.

• Binary file: this is a special, compacted form of the random file. Data is stored at

the byte level and you can read and write individual bytes to the file. This makes the

file access very fast and efficient.

 Electrical Engineering Dept. Visual Basic

59

• Access Mode

For Mode in the Open statement indicates how the file will be used. There are five access

modes:

• Input: open for sequential input; the file will be read sequentially starting at the

beginning.

• Output: open for sequential output; records will be written sequentially starting

at the beginning; if the file does not exist, it is created; if it does exist, it is overwritten.

• Random: open for random read and write; any specific record can be accessed.

• Append: sequential output to the end of an existing file; if the file does not exist

it is created; it does not overwrite the file.

• Binary: open for binary read and write; access is at byte level.

If access mode is not specified in the Open statement, For Random is used by default.

Sequential File

Creating a File

To create a file , we use the following command

Open "fileName" For Output As #fileNumber

Each file created must have a file name and a file number for identification. As for the file
name, you must also specify the path where the file will reside. For example:

Open "c:\My Documents\sample.txt" For Output As #1

will create a text file by the name of sample.txt in My Document folder in C drive. The
accompanied file number is 1. If you wish to create a HTML file , simply change the
extension to .html

Open "c:\My Documents\sample.html" For Output As # 2

Sample Program : Creating a text file

 Electrical Engineering Dept. Visual Basic

60

Private Sub create_Click()

Dim intMsg As String

Dim StudentName As String

Open "c:\My Documents\sample.txt" For Output As #1

intMsg = MsgBox("File sample.txt opened")

StudentName = InputBox("Enter the student Name")

Print #1, StudentName

intMsg = MsgBox("Writing a" & StudentName & " to sample.txt ")

Close #1

intMsg = MsgBox("File sample.txt closed")

End Sub

